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Abstract. The usefulness of finite point transformations is emphasised, as a systematic tool 
for studying the eventual linearisation of ordinary second-order differential equations. 

Recently, the question of linearisation of non-linear differential equations has been 
considered as an interesting starting point for studying their symmetry properties (Sarlet 
et a1 1987). Of course, by linearisation of a differential equation one means that the 
equation becomes linear after performing a suitable non-singular point transformation. 
The interest of linearisation stems from the fact that all ordinary linear second-order 
differential equations have SL(3,R) as the maximal point symmetry group. Indeed, 
in the context of Lie’s theory of extended groups (Lie 1967) it is well known that all 
such equations exhibit eight symmetries whose generators obey the sl(3, R )  Lie algebra 
(Wulfman and Wybourne 1976, Leach 1980, Aguirre and Krause 1984, 1988b). It is 
further known that, as a consequence of Lie’s counting theorem, second-order non- 
linear differential equations can have at most eight point symmetries (Anderson and 
Davison 1974, Ovsiannikov 1978, Aguirre and Krause 1985, Leach 1985), while some 
of them have no symmetry at all. As a matter of fact, there are well known instances 
of non-linear equations which exhibit eight point symmetries, whose generators again 
satisfy the sl(3, R )  commutation relations (Sarlet et a1 1987). Therefore, since the 
commutation relations of symmetry generators are invariant under arbitrary point 
transformations, it follows that linearisation is a necessary and sufficient condition for 
a second-order differential equation to admit SL(3, R )  as the maximal point symmetry 
group. 

All these interesting results (as well as many others that figure in the literature (cf 
Bluman and Cole 1974, Ovsiannikov 1978)) have been established by means of Lie’s 
‘infinitesimal transformation’ approach to extended point symmetry group actions, 
which is a powerful standard technique indeed. Notwithstanding this fact, in two 
recent papers (Aguirre and Krause 1987, 1988a) we have adopted a different, albeit 
rather natural, approach to the issue of symmetries of linear differential equations. In 
fact, we use Jinite point transformations (instead of Lie’s infinitesimal transformations) 
to uncover the symmetry group. In this fashion, a unified and exhaustive treatment 
arises for studying the similarity propenies of such equations, since we calculate the 
finite diffeomorphisms (with their eight parameters included), which correspond to 
non-linear realisations of SL(3, R )  acting as the maximal group of symmetry transfor- 
mations for any given second-order linear differential equation in one dimension. It 
turns out that these diffeomorphisms are given by conjugations of the form F-’P2F, 
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of the projective group P2 of the plane and a non-singular parameter-free point 
transformation F (Aguirre and Krause 1988a). Of course, the first-order infinitesimal 
versions of these diffeomorphisms yield the realisations of the eight generators and, 
hence, the relevant realisation of the sI(3, R )  Lie algebra follows, as usual (Aguirre 
and Krause 1988b). 

The purpose of the present paper is to illustrate some of the huge possibilities of 
the finite transformation approach, while examining briefly the problem of linearisation 
of a second-order differential equation under the scope of this new perspective. Perhaps 
none of our results is really new, though we have not seen the explicit formulae in the 
current literature. As a matter of fact, our aim here is merely instrumental, since the 
emphasis of this paper lies in showing some of the advantages of thejnite transformation 
method for similarity analysis. 

To this end, let us start from the assumption that the differential equation under 
investigation is of the general non-linear form 

x =Ifn( t, x)X;.". 
n 

Since we are interested in general conditions for linearisation, we search those finite 
point transformations (if any), 

t '  = T (  t ,  x)  

x '  = S (  t, x )  

with non-vanishing Jacobian 

J (  t,  x) = T,S, - T,S, (31 

which reduce equation (1) to a linear second-order differential equation. Thus we 
demand 

ji=Cfn(t ,x)Xn * X ' = O  
n 

(4) 

(where x '= d2x'/dtf2), which should hold upon the finite transformation of variables 
(2), by hypothesis. Namely, equation (1) is linearisable if it is linearisable through a 
point transformation like (1). As a matter of fact, if a second-order differential equation 
is linearisable, then one can demand full linear reduction of the equation, as in (4), 
without loss of generality (cf, for instance, Aguirre and Krause 1988a). 

x') are given Now, the first two extended transformations of (2) (i.e. X + X' and x 
by 

X' = ( T, + XTx)-' ( S ,  + is, ) 
X' = ( T, + XT,)-3 [ ( T, + XT, ) (d/d t )( S,  + XS, ) - ( S ,  + XS,) (d/d t ) ( T, + XTx)]. 

( 5 )  

( 6 )  

In consequence, a necessary and sufficient condition for a second-order differential 
equation to be linearisable is provided by the following identity: 

T3,r - T,rS, + (273,x + 'LS, ,  -2SrTrY - SrTt,)X 

+(2T,S,,+ T,S,,-2S,T,,-S,Txx)X2+(T,S,,-  T,,S,)X3 

+( T,S, - T,S,) I f n X f l  = 0. 
n 

(7)  
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This relation must hold for all X, and therefore, after separating the coefficients of the 
different powers of i, one obtains a system of coupled differential equations for T and 
S, in terms of the given f n .  Indeed, one gets 

TIS,, - T,,S, + Jfo = 0 

2 TtS,, + T,Sff - 2 TI$, - TttS, + Jfi = 0 

2 T,Sxl + T,Sx, - 2 TxlSx - T,,S, + Jf2 = 0 

T,S,, - TxXSx + Jf3 = 0 

Jfn = 0 

(8) 

(9) 

(10) 

( 1 1 )  

and, moreover, 

for n =4,  5, . . . , and n = -1 ,  -2, . . . . (12) 

Thus we see that in this approach one recovers, almost immediately (that is, at the 
very beginning of the analysis), a well known feature concerning linearisability of 
ordinary second-order differential equations (Aguirre and Krause 1985, Sarlet et al 
1987), i.e. all linearisable second-order differential equations must be, at most, poly- 
nomials of the third degree in x. That is, a necessary condition for linearisation is that 
the differential equation be of the form: 

x = fo(  t, x)  + f * (  t ,  x)X + f i (  t ,  X)X2+ f 3 (  t, x)X3. (13)  

Of course, one can also show this important theorem by means of the standard tools 
offered by Lie’s infinitesimal method; the proof, however, turns out to be much more 
involved (cf, for instance, Aguirre and Krause (1985)). 

Clearly, condition (13)  is nor suficient for linearisation. Nevertheless, the finite 
transformation approach to this issue also yields a constructive procedure in order to 
try to linearise a given equation of this form. Plainly so, since a necessary and sufficient 
condition for an equation of the form (13 )  to be linearisable is that the system of 
differential equations (8)-( 1 1 )  has solutions for T and S (with J # 0). 

As a simple example of the power of the finite transformation approach to similarity 
analysis, in this paper we will also discuss the linearisation problem of differential 
equations of a rather special type, i.e. henceforth we consider 

X =f (  t ,  x )  (14)  

where f is a given function of t and x. These are the simplest kind of differential 
equations of the form (13), and they deserve some interest by themselves. Moreover, 
let us also recall that every equation of the form x = f (  t ,  x) + g(  t ) x  may be cast into 
the form stated in (14) by means of the familiar transformation 

X + X  e ~ p ( ~ ~ ~ ~ d t ’ g ( t ’ ) )  

and so it can be linearised if its reduced form (14) is linearisable. 

the system of equations (8)-( l l ) ,  which now becomes 
Therefore, according to the previous results, in order to linearise (14) one considers 

TIS,, - Tt IS, + ( TlSX - TXSt I f  ( t, x 1 = 0 

2 TISl, + T,S,, - 2 T J ,  - T,,S, = 0 

( 1 5 )  

(16) 
2 T,Slx + T,Sxx - 2 T,,S, - T,,St = 0 

TxS,, - T,,S, = 0. 
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One can formally integrate these equations in a straightforward manner. (For the sake 
of briefness we omit the details of these calculations.) 

Firstly, one assumes T, # 0. Then one obtains: 

S (  1, X )  = 41( t )  T (  2, X )  + 42( t ) (19) 

(20) I, x )  = [43( t )X + 44( til-' - 1 2 (  t ) / & ( t )  

where the 4 are functions of t which have to satisfy 

4 3 (  )f( l ,  = ( $ 1  6.3/ $ 1  - + ( $ 1  &4/ 41 - $4) (23) 

and where the C are arbitrary constants of integration. (Clearly 43( t )  # 0, since T, # 0.) 
Secondly, if on the other hand one assumes T, = 0, from the modified equations 
( 1 9 4  17) one gets: 

SO, x )  = + , W x +  G 2 ( t )  (24) 

i ( t )  = C0(+l(N2 (i.e. J l l ( t )  # 0) ( 2 5 )  

[ILl(t)I2f(t ,  x)  = ( 2 ~ ~ - I L l ~ ~ ) x + ( 2 ~ 1 ~ 2 - ~ 1 ~ 2 ) .  (26) 

where the have to satisfy 

Hence, a mere glance at equations (23) and (26) yields the important conclusion: 
non-linear differential equtions of the form x =f( t ,  x)  are intrinsically non-linear (i.e. 
they are not linearisable). This is a nice result, perhaps well known to some people 
working in this field. However, as we have already remarked, we have been unable 
to find it in the literature. 

In view of this short paper, and also taking into account our previous work on this 
subject (Aguirre and Krause l987,1988a, b), it seems reasonable to conclude that finite 
transformations in similarity analysis afford a powerful method, worthy of further 
research. Work is in progress concerning the use of finite transformation techniques 
for studying the symmetries of second-order non-linear ordinary differential equations 
in general. 
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